Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38393049

RESUMO

Eleven new brominated depsidones, namely spiromastixones U-Z5 (1-11) along with five known analogues (12-16), were isolated from a deep-sea-derived fungus Spiromastix sp. through the addition of sodium bromide during fermentation. Their structures were elucidated by extensive analysis of the spectroscopic data including high-resolution MS and 1D and 2D NMR data. Compounds 6-10 and 16 exhibited significant inhibition against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with MIC values ranging from 0.5 to 2.0 µM. Particularly, tribrominated 7 displayed the strongest activity against MRSA and VRE with a MIC of 0.5 and 1.0 µM, respectively, suggesting its potential for further development as a new antibacterial agent.


Assuntos
Depsídeos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Lactonas/farmacologia , Fungos , Testes de Sensibilidade Microbiana
2.
Org Lett ; 26(6): 1160-1165, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38319976

RESUMO

Epipyrone A is a unique C-galactosylated 4-hydroxy-2-pyrone derivative with an antifungal potential from the fungus Epicoccum nigrum. We elucidated its biosynthesis via heterologous expression and characterized an unprecedented membrane-bound pyrone C-glycosyltransferase biochemically. Molecular docking and mutagenesis experiments suggested a possible mechanism for the heterocyclic C-glycosylation and the importance of a transmembrane helix for its catalysis. These results expand the repertoire of C-glycosyltransferases and provide new insights into the formation of C-glycosides in fungi.


Assuntos
Glicosiltransferases , Pironas , Glicosiltransferases/metabolismo , Pironas/farmacologia , Pironas/química , Simulação de Acoplamento Molecular , Glicosilação , Glicosídeos/química , Catálise
3.
Org Lett ; 26(3): 642-646, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38214302

RESUMO

Oxosorbicillinol and cage-like acresorbicillinol C are bioactive sorbicillinoids produced by Acremonium chrysogenum. We found that a berberine bridge enzyme-like oxidase AcsorD was responsible for their biosynthesis by gene deletion and heterologous expression. AcsorD catalyzed oxidation of sorbicillinol to form oxosorbicillinol in in vitro assays, which was successively condensed with sorbicillinol to form acresorbicillinol C spontaneously. Finally, site-directed mutation revealed that Tyr525 was the key residue in the catalysis of the oxidation reaction and unlocking cage-like acresorbicillinol C production.


Assuntos
Acremonium , Oxirredutases N-Desmetilantes , Oxirredutases , Cicloexanonas
5.
J Nat Prod ; 86(5): 1360-1369, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159940

RESUMO

Seven new eremophilane sesquiterpenoids, paraconulones A-G (1-7), along with three previously reported analogues, periconianone D (8), microsphaeropsisin (9), and 4-epi-microsphaeropsisin (10), were obtained from an EtOAc extract of the marine-derived fungus Paraconiothyrium sporulosum DL-16. The structures of these compounds were elucidated by extensive spectroscopic and spectrometric analyses, single-crystal X-ray diffraction, and computational studies. Compounds 1, 2, and 4 are the first examples of dimeric eremophilane sesquiterpenoids coupled through a C-C bond identified from microorganisms. Compounds 2-5, 7, and 10 showed inhibitory effects on lipopolysaccharide-induced NO production in BV2 cells, which were comparable to the positive control curcumin.


Assuntos
Ascomicetos , Sesquiterpenos , Sesquiterpenos Policíclicos , Ascomicetos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Cristalografia por Raios X , Estrutura Molecular
6.
J Fungi (Basel) ; 9(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36983515

RESUMO

Phytopathogens, such as phytopathogenic bacteria, fungi, and nematodes, have caused great losses of crops every year, seriously threatening human health and agricultural production. Moreover, marine-derived fungi are abundant sources of structurally unique and bioactive secondary metabolites that could be potential candidates for anti-phytopathogenic drugs. One new sulfoxide-containing bisabolane sesquiterpenoid aspersydosulfoxide A (1) and nine known analogues (2-10) were isolated from the marine-derived A. sydowii LW09. The absolute configuration of the sulfur stereogenic center in 1 was determined by electronic circular dichroism (ECD) calculations. Compound 5 showed inhibition activity against Pseudomonas syringae, with a minimum inhibitory concentration (MIC) value of 32 µg/mL, whereas, compounds 2, 7, and 8 showed antibacterial activities toward Ralstonia solanacarum, with the same MIC value at 32 µg/mL. Meanwhile, compounds 3, 7, and 8 inhibited the fungal spore germination of Fusarium oxysporum, with the half maximal effective concentration (EC50) values of 54.55, 77.16, and 1.85 µg/mL, respectively, while compounds 2, 3, 7, and 8 inhibited the fungal spore germination of Alternaria alternata, which could be induced by vacuolization of germ tubes, with EC50 values of 34.04, 44.44, 26.02, and 46.15 µg/mL, respectively. In addition, compounds 3, 7, and 8 exhibited nematicidal activities against Meloidogyne incognita second-stage juveniles (J2s). In addition, compound 8 possessed the strongest nematicidal activity of nearly 80% mortality at 60 h with the half lethal concentration (LC50) values of 192.40 µg/mL. Furthermore, compounds 3, 7, and 8 could paralyze the nematodes and then impair their pathogenicity.

7.
J Fungi (Basel) ; 9(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983551

RESUMO

The species of Agrocybe (Strophariaceae, Agaricales, Agaricomycetes) are saprophytic and widely distributed in temperate regions. In this study, a new species named Agrocybe striatipes from China is described, which has been successfully cultivated in China recently. The phenotypic characteristics examination and molecular phylogenetic analyses using multilocus data (ITS and nrLSU) both support it as a new species in the genus Agrocybe. Moreover, nutritional ingredient analysis showed that the fruiting body of A. striatipes was rich in seventeen amino acids, including eight essential amino acids, in addition to high levels of calcium (78.5 mg/kg) and vitamin D (44.1 µg/100g). The following analysis of the heavy metal contents of the fruiting bodies show that it does not contain lead, cadmium, arsenic, mercury, and other heavy metal elements. In the crude extract of the mushroom, the nutrients in the aqueous phase are amino acids and oligosaccharides, and the active substances in the ethyl acetate layer are sterols, which have a variety of pharmacological effects. In conclusion, A. striatipes is not only a new species but also has highly application values as a cultivated edible mushroom in nutrition and health.

8.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985551

RESUMO

Six new polyene carboxylic acids named serpentemycins E-J (1-6), together with three known analogs (7-9), were isolated from the fermentation medium of Streptomyces sp. TB060207, which was isolated from arid soil collected from Tibet, China. The structures of the new compounds were elucidated mainly on the basis of HR-ESI-MS and NMR spectroscopic analyses. The inhibitory activities of compounds 1-9 against NO production in LPS-activated RAW264.7 cells were evaluated. Compound 9 has an inhibition rate of 87.09% to 60.53% at concentrations ranging from 5.0 to 40.0 µM.


Assuntos
Ácidos Carboxílicos , Streptomyces , Ácidos Carboxílicos/farmacologia , Tibet , Streptomyces/química , Espectroscopia de Ressonância Magnética , Polienos/química
9.
J Nat Prod ; 85(12): 2723-2730, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36414326

RESUMO

Spiromaterpenes are a group of rare tropone-containing sesquiterpenes with antineuroinflammatory activity. Herein, we elucidate their biosynthetic pathway in a deep-sea-derived Spiromastix sp. fungus by heterologous expression, biochemical characterization, and incubation experiments. The sesquiterpene cyclase SptA was first characterized to catalyze the production of guaia-1(5),6-diene, and a multifunctional cytochrome P450 catalyzed the tropone ring formation. These results provide important clues for the rational mining of bioactive guaiane-type sesquiterpenes and expand the repertoire of P450 activities to synthesize unique building blocks of natural products.


Assuntos
Sesquiterpenos , Sesquiterpenos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Fungos/metabolismo , Sesquiterpenos de Guaiano
10.
Carbohydr Polym ; 295: 119862, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989006

RESUMO

Polysaccharides are known to confer protection against obesity via modulation of gut microbiota. To expand our knowledge of mushroom-derived prebiotics, we investigated the structural characteristics and anti-obesity effects of Lyophyllum decastes polysaccharides. Two heteroglycans were purified and characterized. The isolated polysaccharides effectively reduced obesity and the related disorders in the diet-induced obese (DIO) mice. An altered gut microbiota with enrichments of Bacteroides intestinalis and Lactobacillus johnsonii and an increase of secondary bile acids were detected in the polysaccharide-treated mice. Supplementation of B. intestinalis and L. johnsonii prevented the obesity and hyperlipidemia in DIO mice, demonstrating their causal linkage to the efficacy of polysaccharides. An enhancement of energy expenditure in the brown adipose tissues due to up-regulation of the secondary bile acids-activated TGR5 pathway was deduced to be one of the mechanisms underlying the effect of polysaccharides. These results confirmed Lyophyllum decastes-derived polysaccharides as new prebiotics for preventing and treating obesity.


Assuntos
Agaricales , Microbioma Gastrointestinal , Animais , Ácidos e Sais Biliares , Dieta Hiperlipídica , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/prevenção & controle , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Prebióticos
11.
Front Microbiol ; 13: 892437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814693

RESUMO

Fu Brick tea is a very popular post-fermented tea that is known for its "golden flower fungus," Aspergillus cristatus, which becomes the dominant microbe during the maturation process. This study used both culture-dependent methods and high-throughput sequencing to track microbial succession and interactions during the development of the golden flower fungus, a crucial component of the manufacturing process of Fu Brick tea. Among the bacterial communities, Klebsiella and Lactobacillus were consistently cultured from both fresh tea leaves and in post-fermentation Fu Brick tea. Methylobacterium, Pelomonas, and Sphingomonas were dominant genera in fresh tea leaves but declined once fermentation started, while Bacillus, Kluyvera, and Paenibacillus became dominant after piling fermentation. The abundance of A. cristatus increased during the manufacturing process, accounting for over 98% of all fungi present after the golden flower bloom in the Fu Brick tea product. Despite their consistent presence during culture work, network analysis showed Lactobacillus and Klebsiella to be negatively correlated with A. cristatus. Bacillus spp., as expected from culture work, positively correlated with the presence of golden flower fungus. This study provides complete insights about the succession of microbial communities and highlights the importance of co-occurrence microbes with A. cristatus during the manufacturing process of Fu Brick tea.

12.
J Fungi (Basel) ; 8(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628785

RESUMO

Sorbicillinoids are a class of structurally diverse hexaketide metabolites with good biological activities. To explore new structural sorbicillinoids and their bioactivities, the marine-derived fungus Acremonium chrysogenum C10 was studied. Three new sorbicillinoid derivatives, acresorbicillinols A-C (1-3), along with five known ones, trichotetronine (4), trichodimerol (5), demethyltrichodimerol (6), trichopyrone (7) and oxosorbicillinol (8), were isolated. The structures of new sorbicillinoids were elucidated by analysis of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS). The absolute configurations of compounds 1-3 were determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. Compound 3 exhibited a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, with the IC50 value ranging from 11.53 ± 1.53 to 60.29 ± 6.28 µM in 24 h. Additionally, compounds 2 and 3 showed moderate activities against Staphylococcus aureus and Cryptococcus neoformans, with IC50 values of 86.93 ± 1.72 and 69.06 ± 10.50 µM, respectively. The boundary of sorbicillinoid biosynthetic gene cluster in A. chrysogenum was confirmed by transcriptional analysis, and the biosynthetic pathway of compounds 1-8 was also proposed. In summary, our results indicated that A. chrysogenum is an important reservoir of sorbicillinoid derivatives, and compound 3 has the potential for new natural agents in DPPH radical scavenging.

13.
Appl Environ Microbiol ; 88(4): e0239921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910558

RESUMO

Fructosyltransferases (FTases), a group of carbohydrate-active enzymes, synthesize fructooligosaccharides (FOS) and fructans, which are promising prebiotics for human health. Here, we identified a novel FTase, InuCA, from Lactobacillus crispatus, a dominant species in the vaginal microbiota of human. InuCA was characterized by the shortest C terminus and the highest isoelectric point among the reported Lactobacillus FTases. InuCA was an inulosucrase and produced a series of FOS using sucrose as the substrate at a moderate temperature. Surprisingly, the C-terminal deletion mutant synthesized oligosaccharides with the fructosyl chain longer than that of the wild type, suggesting that the C-terminal part blocked the binding of long-chain receptor. Moreover, InuCA bound to the cell surface by electrostatic interaction, which was dependent on the environmental pH and represented a distinctive binding mode in FTases. The catalytic and structural properties of InuCA will contribute to FTase engineering and the knowledge of the adaptation of L. crispatus in the vaginal environment. IMPORTANCE L. crispatus is one of the most important species in human vaginal microbiotas, and its persistence is strongly negatively correlated with vaginal diseases. Our research reveals that a novel inulosucrase, InuCA, is present in L. crispatus. InuCA keeps the ability to synthesize prebiotic fructo-oligosaccharides, although it lacks a large part of the C-terminal region compared to other FTases. Remarkably, the short C terminus of InuCA blocks the transfructosylation activity for producing oligosaccharides with longer chains, which is meaningful for the directional modification of FTases and the oligosaccharide products. Besides the catalytic activity, InuCA is anchored on the cell surface, depending on the environmental pH, and also may be involved in the adhesion of L. crispatus to the vaginal epithelial cells. Since L. crispatus plays an essential role in the normal vaginal micro-ecosystem, the described work will be helpful to elucidate the functional genes and colonization mechanism of the dominant species.


Assuntos
Hexosiltransferases , Lactobacillus crispatus , Microbiota , Feminino , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Lactobacillus crispatus/genética , Eletricidade Estática , Vagina
14.
Microbiol Spectr ; 9(3): e0039921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878295

RESUMO

Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCE Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.


Assuntos
Cápsulas Bacterianas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia , Acetilação , Animais , Escherichia coli/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Lisossomos/imunologia , Lisossomos/microbiologia , Masculino , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Vacúolos/imunologia , Vacúolos/microbiologia
15.
J Agric Food Chem ; 69(43): 12695-12704, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677054

RESUMO

The Pal/Rim pathway and its key transcription factor PacC play important roles in fungal adaptation to ambient pH regarding growth, secondary metabolism, and virulence. However, the effect of PacC on the secondary metabolism of the important biocontrol fungus Trichoderma harzianum remains elusive. To answer this question, ThpacC deletion (KO-ThpacC) and overexpression (OE-ThpacC) mutants of T. harzianum 3.9236 were constructed. Transcriptomic analysis of T. harzianum and KO-ThpacC suggested that ThpacC acted as both a positive and a negative regulator for secondary metabolite (SM) production. Further investigation revealed that deletion of ThpacC abolished homodimericin A and 8-epi-homodimericin A production. Moreover, ThpacC plays a role in the antagonism of T. harzianum against Sclerotinia sclerotiorum. 8-epi-Homodimericin A demonstrated moderate inhibitory activity against S. sclerotiorum. Our results contribute to a deeper understanding of the ThpacC function on SM production and the antifungal activity of T. harzianum.


Assuntos
Ascomicetos , Trichoderma , Antifúngicos/farmacologia , Hypocreales , Trichoderma/genética
16.
Chin J Nat Med ; 19(9): 693-699, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34561081

RESUMO

A chemical investigation on the fermentation products of Sanghuangporus sanghuang led to the isolation and identification of fourteen secondary metabolites (1-14) including eight sesquiterpenoids (1-8) and six polyphenols (9-14). Compounds 1-3 were sesquiterpenes with new structures which were elucidated based on NMR spectroscopy, high resolution mass spectrometry (HRMS) and electronic circular dichroism (ECD) data. All the isolates were tested for their stimulation effects on glucose uptake in insulin-resistant HepG2 cells, and cellular antioxidant activity. Compounds 9-12 were subjected to molecular docking experiment to primarily evaluate their anti-coronavirus (SARS-CoV-2) activity. As a result, compounds 9-12 were found to increase the glucose uptake of insulin-resistant HepG2 cells by 18.1%, 62.7%, 33.7% and 21.4% at the dose of 50 µmol·L-1, respectively. Compounds 9-12 also showed good cellular antioxidant activities with CAA50 values of 12.23, 23.11, 5.31 and 16.04 µmol·L-1, respectively. Molecular docking between COVID-19 Mpro and compounds 9-12 indicated potential SARS-CoV-2 inhibitory activity of these four compounds. This work provides new insights for the potential role of the medicinal mushroom S. sanghuang as drugs and functional foods.


Assuntos
Agaricales , Tratamento Farmacológico da COVID-19 , Polifenóis , Sesquiterpenos , Antioxidantes/farmacologia , Basidiomycota , Glucose , Humanos , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , SARS-CoV-2 , Sesquiterpenos/farmacologia
17.
Mar Drugs ; 19(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202523

RESUMO

Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A-D (4-7), together, with seven known metabolites (3 and 8-13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4' in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 µM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 µM, respectively.


Assuntos
Diterpenos/farmacologia , Fungos , Inibidores de Glicosídeo Hidrolases/farmacologia , Isocumarinas/farmacologia , Organismos Aquáticos , Diterpenos/química , Humanos , Concentração Inibidora 50 , Isocumarinas/química , Estrutura Molecular , Áreas Alagadas
18.
Am J Transl Res ; 13(5): 4581-4590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150038

RESUMO

OBJECTIVE: To investigate the anti-hypoxia effects of walnut oligopeptides (WOPs) in mice. METHODS: Randomly divide the mice into 4 experimental sets. Then randomly divide each set of mice into 5 groups, including one vehicle control group, one whey protein group (220 mg/kg), and three WOPs intervention groups (110 mg/kg, 220 mg/kg, 440 mg/kg). Test substances were administered orally to mice via the drinking water for 30 days. RESULTS: WOPs significantly extended the normobaric hypoxia survival time, sodium nitrite toxicosis survival time, and acute cerebral ischemia survival time. Notably, WOPs increased red blood cell (RBC), hemoglobin (Hb) and hematocrit (Hct) levels, decreased malonaldehyde (MDA) content and lactate content in brain, enhanced brain lactate dehydrogenase (LDH) activity, and promoted the expression levels of hypoxia-inducible factor 1alpha (HIF1α) mRNA and vascular endothelial growth factor (VEGF) mRNA. CONCLUSION: WOPs have anti-hypoxia effects, and the mechanism may involve the following aspects: the first is to improve the blood's oxygen carrying capacity and oxygen utilization rate, the second is to minimize the lesion of lipid peroxidation, the third is to increase the brain's ability to buffer against lactic acidosis of mice, and the fourth is to promote angiogenesis and regulate hypoxia response.

19.
Mar Drugs ; 19(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801640

RESUMO

Three new andrastin-type meroterpenoids penimeroterpenoids A-C (1-3) together with two known analogs (4 and 5) were isolated from the cultures of the marine-derived Penicillium species (sp.). The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) Nuclear Magnetic Resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of 1-3 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra. Compound 1 showed moderate cytotoxicity against A549, HCT116, and SW480 cell lines.


Assuntos
Androstadienos/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Penicillium/metabolismo , Terpenos/farmacologia , Células A549 , Androstadienos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade , Terpenos/isolamento & purificação
20.
Am J Transl Res ; 13(3): 1657-1666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841687

RESUMO

OBJECTIVE: To explore the anti-hypoxic effects of oat oligopeptides (OOPs) in mice. METHODS: We randomly divided mice into six groups, including a vehicle control group, a whey protein group (0.50 g/kg), and four OOPs-treated groups (0.25, 0.50, 1.00, and 2.00 g/kg). The test substances were administered by gavage once a day for 30 days. The normobaric hypoxia, sodium nitrite toxicosis, and acute cerebral ischemia survival times were recorded. Also, the MDA content, the lactate levels, the LDH activity, and the mRNA levels of HIF-1α and VEGF in the brains were measured. We performed a whole blood cell analysis using a blood analyzer. RESULTS: The OOPs significantly extended the survival times of normobaric hypoxia, sodium nitrite toxicosis, and acute cerebral ischemia. Notably, the OOPs enhanced the RBC, Hb, and Hct levels, decreased the malonaldehyde (MDA) and lactate content in the brain, enhanced the brain lactate dehydrogenase (LDH) activity, and increased the hypoxia-inducible factor 1alpha (HIF1α) mRNA and the vascular endothelial growth factor (VEGF) mRNA expression levels. CONCLUSION: OOPs have anti-hypoxic effects, and the mechanism may involve improving the blood's oxygen carrying capacity and oxygen utilization rate minimizing the lipid peroxidation lesions, increasing the brain's ability to buffer against lactic acidosis in mice, and promoting angiogenesis and regulating the hypoxic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...